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Architectural Copolymers:
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Rod-Shaped, Cylindrical
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Rodlike, cylindrical dendrimers were first synthesized by
divergent strategies as early as 1987however, inadequate
analytical methodology precluded unequivocal characterization
until now. Recent seminal reports by Perckave described the
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Figure 1. (A) Structural notation for spheroidal dendrimers. (B) Structural
notation for ellipsoidal/cylindrical dendrimerdl. = core multiplicity;
N, = branch cell multiplicity;G = generation.

dendrimers may be controlled as a function of the dendron
generation level®) and the polymerization degredld of the

“quasi-equivalence” of dendrons as a function of backbone degreelinear core. As the generation level increases, amplification of

of polymerization N;) (see Figure 1B for dendrons at lower
generation levels (i.eG = 1 or 2)). Percec et al. have clearly

dendron structure along the linear core chain forces tethered
congestion until chain extension is attainedGt 4. These

demonstrated that they can induce polymeric shape control fromdendrimer hybrids represent a new “hybridized macromolecular

spheroids to cylindrical polymers as a function of backbone
multiplicity N.. Related work by Schiter* has shown that

polymerizable monodendrons or dendronization of polymeric
backbones lead to the formation of cylindrical dendrimers;

topology”, which we refer to aarchitectural copolymerts They
are copolymers derived from a combination of linear and dendritic
macromolecular architecturés.

Appropriate initiator cores were synthesized by the living

however, unequivocal characterization has been hampered by theicationic polymerization of 2-ethyl-2-oxazoline with methyl to-

strong propensities to undergo aggregation.

We now report the first divergent synthesis of rod-shaped,
cylindrical dendrimers derived from a high multiplicitiNg =
100-500), linear, random coil polymeric core (Figure 1B) and
their transformation from random coil to extended cylindrical
conformations as a function of generation level enhancement.
Since our first work on poly(amidoamine) (PAMAM) dendrimers
in the early 19808 attention has focused almost exclusively on
low multiplicity (N, = 1—6) pointlike cores leading to substan-
tially spheroidal morphologie¥;® 7 illustrated by the dendritic
structural/mathematical notation (Figure 1A). From notation B,
it can be readily visualized that the aspect ratios of these
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sylate as initiator. Subsequent deprotection by acid hydrolysis
produces a reactive poly(ethyleneimine) (PEl) core with an
identicalN;, typically ranging from 100 to 500 (DR N, = 100~
500). This linear-PEI core synthesis is identical to those described
earlier for constructing dendrigraft architectutfeBendronization
of thesel-PEI's was performed usintgli vergent, in situ branch
cell” synthesis strategiéswhich were adapted to the reaction
sequence illustrated in Scheme 1. It was necessary to use
substantially larger excesses of ethylenediamine (326000
mol/ester group) at the amidation stage with longer reaction times
(5—8 days, 5°C) to ensure completion. Failure to follow these
criteria led to polydispersed or insoluble, cross-linked products.
Despite this modified synthesis, long-term storag2-{3 months
at 25°C) of these dendrimers in the neat amine-terminated form
occasionally led to sporadic cross-linked products. Conversion
to sodium carboxylated terminal groups by alkaline hydrolysis
provided products which were pacified and remained soluble even
after long-term storage (i.ez6 months). The products were
generally isolated as white-cream solids and characterized by
FTIR, 1°C NMR, SEC, HPLC, MALDI-TOF MS, and transmis-
sion electron microscopy (TEM).

Examination by TEM of the high multiplicity coré\¢ = 350—
500) dendrimers functionalized with sodium carboxylate surfaces
revealed unigue morphogenesis patterns as a function of genera-
tion level. High sodium atom densities at the periphery of the
dendrimer surfaces allowed direct imaging without the need for
conventional staining, as we have reported eatfiet.ower
generation dendrimers gave TEM images ranging from nonde-
script blobs G = 0 and 1; Z= CO,Na) to somewhat elongated
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Scheme 1. Dendronization Scheme for Conversion of Linear
Poly(ethyleneimine) Cores to Dendri Poly(amidoamine)
Hybrids
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nonspherical clusters3(= 2—3; Z = CO;Na) reminiscent of
random coil conformationsAt the (G= 4; Z = CO,Na) stage, ' — : "

a remarkable molecular morphogenesis occurre&s shown in Figure 2. (a) Electron micrograph (TEM) of linear poly(ethyleneimine)
Figure 2a extensions to elongated rods were observed throughoutPEl) core; dendri poly(amidoamine) PAMANG = 4(a); Z= (—CO;-

the hybrid dendrimer species population, accompanied by apparenfNa)js, Nc = 300-500. Note self-organization of dendrimer rods into
self-organization into parallel bundles of extended rods. Indi- parallel arrays. (b) Electron micrograph (TEM) of ammonia gNebre;
vidual rod diameters as measured from the electron micrographdendri poly(amidoamine) PAMAMG = 4(a); Z= (~CONa)g, Ne =
appear to range between 25 and 32 A. Preliminary molecular 3. Note self-organization of dendrimer spheroids into clusters.
modeling experiments indicate individual rod diameters of ap-

proximately 35-45 A. On the basis of the lengths of distinguish- nanoscale dendritic morphologies add new options to the reper-
able individual rods (i.e., DB= 100-500), the lengths appear to  toire of known dendrimer building blocks for the controlled
range from=500-3000 A. Thus, aspect ratios range from Synthesis of higher ordered covalent complexity as well as the
approximately 15 to 100 depending on the degree of polymeri- construction of nanoscale devices and modtiés.

zation of the linear poly(ethyleneimine) core used. Itis of interest
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